DV Qualifiers in clocks by AT db 2/3/17

- HR

CETIFICATION

SDG No:

FA39942

Laboratory:

Accutest, Florida

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

Humacao, PR

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken December 22 and 23, 2016 and were analyzed in Accutest Laboratory of Orlando, Florida that reported the data under SDG No.: FA39942. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE	MATRIX	ANALYSIS PERFORMED
	DESCRIPTION		
FA39942-1	MW-20S	Groundwater	VOA from TCL List
FA39942-2	FB12216	AQ – Field Blank Water	VOA from TCL List
FA39942-3	MW-20D	Groundwater	VOA from TCL List
FA39942-4	RA-10S	Groundwater	VOA from TCL List
FA39942-5	TB122216NRB	AQ – Trip Blank Water	VOA from TCL List
FA39942-6	TB122216RS	AQ – Trip Blank Water	VOA from TCL List
FA39942-7	EB122316	AQ – Equipment Blank	VOA from TCL List
FA39942-8	FB122316	AQ – Field Blank Water	VOA from TCL List
FA39942-9	MW-19	Groundwater	VOA from TCL List
FA39942-10	TB122316NR	AQ – Trip Blank Water	VOA from TCL List
FA39942-11	MW-16	Groundwater	VOA from TCL List
FA39942-11D	MW-16 MSD	Groundwater	VOA from TCL List
FA39942-11S	MW-16 MS	Groundwater	VOA from TCL List
FA39942-10	TB122316RS	AQ – Trip Blank Water	VOA from TCL List

" dael Infin

Ménde.

1600872

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

January 71, 2017

Report of Analysis

Page 1 of 2

Client Sample ID: MW-20S

Lab Sample ID:

FA39942-1

Date Sampled: 12/22/16

Matrix: Method: AQ - Ground Water SW846 8260C

1

Date Received: 12/28/16 Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Prep Batch **Analytical Batch**

Run #1 Run #2 File ID J0981953.D DF Analyzed 01/04/17

By DP Prep Date n/a

n/a

Q

VJ5532

Purge Volume

Run #1

5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l

ND = Not detected

98-82-8

MDL = Method Detection Limit

ND

1.0

RL = Reporting Limit

E = Indicates value exceeds calibration range

Isopropylbenzene

J = Indicates an estimated value

ug/l

0.33

B = Indicates analyte found in associated method blank

Client Sample ID: MW-20S Lab Sample ID:

FA39942-1

Date Sampled: 12/22/16

Matrix:

AQ - Ground Water SW846 8260C

Date Received: 12/28/16

Q

Method: Project:

BMSMC, Building 5 Area, Humacao, PR

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l
79-20-9	Methyl Acetate	ND	20	5.0	ug/l
74-83-9	Methyl Bromide ^a	ND	2.0	0.50	ug/l
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l
1634-04-4	Methyl Tert Butyl Ether	2.9	1.0	0.20	ug/l
100-42-5	Styrene	ND	1.0	0.24	ug/l
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l
	m,p-Xylene	ND	2.0	0.30	ug/l
95-47-6	o-Xylene	ND	1.0	0.26	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
1868-53-7	Dibromofluoromethane	102%		83-1	18%
17060-07-0	1,2-Dichloroethane-D4	107%		79-1	25%
2037-26-5	Toluene-D8	100%		85-1	12%
460-00-4	4-Bromofluorobenzene	105%		83-1	18%
(a) Associate	d CCV outside control limits				

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: FB122216 Lab Sample ID:

FA39942-2

Matrix:

AQ - Field Blank Water

SW846 8260C

Method:

Date Received: 12/28/16

Date Sampled: 12/22/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Run #1

File ID J0981954.D DF Analyzed 01/04/17

By DP Prep Date n/a

Prep Batch n/a

Q

Analytical Batch

VJ5532

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

fael Infant Méndez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FB122216

Lab Sample ID: FA39942-2

Matrix: Method: AQ - Field Blank Water

SW846 8260C

Project:

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 12/22/16

Date Received: 12/28/16 Percent Solids: n/a

Q

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l
79-20-9	Methyl Acetate	ND	20	5.0	ug/l
74-83-9	Methyl Bromide ^a	ND	2.0	0.50	ug/l
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l
100-42-5	Styrene	ND	1.0	0.24	ug/l
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l
	m,p-Xylene	ND	2.0	0.30	ug/l
95-47-6	o-Xylene	ND	1.0	0.26	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
1868-53-7	Dibromofluoromethane	99%		83-1	18%
17060-07-0	1,2-Dichloroethane-D4	112%		79-1	
2037-26-5	Toluene-D8	98%		85-1	12%
460-00-4	4-Bromofluorobenzene	107%		83-1	18%

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: MW-20D Lab Sample ID:

FA39942-3

Matrix:

AQ - Ground Water

DF

1

SW846 8260C

Date Sampled: 12/22/16

Date Received: 12/28/16

Percent Solids: n/a

BMSMC, Building 5 Area, Humacao, PR

Run #1

Method:

Project:

File ID J0981955.D Analyzed 01/04/17

By DP Prep Date n/a

Prep Batch n/a

J

J

J

Analytical Batch

VJ5532

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	0.22	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	0.39	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	0.34	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

toel Infante Méndez IC # [88]

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: MW-20D Lab Sample ID:

FA39942-3

Date Sampled: 12/22/16 Date Received: 12/28/16

Matrix: Method:

AQ - Ground Water SW846 8260C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide a	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)		5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	13.2	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	348	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	100%		83-11	8%	
17060-07-0	1,2-Dichloroethane-D4	112%		79-12	25%	
2037-26-5	Toluene-D8	98%		85-11	2%	
460-00-4	4-Bromofluorobenzene	109%		83-11	8%	99
(a) Associate	d CCV auteida cantral limits					- 1

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: RA-10S Lab Sample ID:

FA39942-4

By

DP

Prep Date

n/a

AQ - Ground Water

DF

1

Date Sampled: 12/22/16 Date Received: 12/28/16

File ID

SW846 8260C

Percent Solids: n/a

n/a

Q

Method: Project:

Matrix:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

01/04/17

Prep Batch

Analytical Batch VJ5532

Run #1 Run #2

Purge Volume

J0981956.D

Run #1 Run #2 5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

toel Infanta Méndez IC # 188

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: RA-10S

Lab Sample ID:

FA39942-4 AQ - Ground Water

Matrix: Method: Project:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 12/22/16 Date Received: 12/28/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide a	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	4.3	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	96%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	111%		79-17	25%	
2037-26-5	Toluene-D8	103%		85-13	12%	17
460-00-4	4-Bromofluorobenzene	109%		83-1	18%	/ 9

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

DP

Page 1 of 2

Client Sample ID: TB122216NRB Lab Sample ID:

FA39942-5

Date Sampled: 12/22/16

Matrix: Method: AQ - Trip Blank Water SW846 8260C

DF

1

Date Received: 12/28/16 Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Run #1

File ID J0981957.D Analyzed 01/04/17

Prep Date n/a

Prep Batch n/a

Q

Analytical Batch VJ5532

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

tuel Infant Méndez 16 # 1881

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB122216NRB Lab Sample ID: FA39942-5

Matrix:

AQ - Trip Blank Water

Method: SW846 8260C Project:

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 12/22/16

Date Received: 12/28/16 Percent Solids: n/a

Q

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units		
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l		
79-20-9	Methyl Acetate	ND	20	5.0	ug/l		
74-83-9	Methyl Bromide a	ND	2.0	0.50	ug/l		
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l		
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l		
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l		
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l		
100-42-5	Styrene	ND	1.0	0.24	ug/l		
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l		
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l		
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l		
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l		
108-88-3	Toluene	ND	1.0	0.20	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l		
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l		
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l		
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l		
	m,p-Xylene	ND	2.0	0.30	ug/l		
95-47-6	o-Xylene	ND	1.0	0.26	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	100%		83-11	8%		
17060-07-0	1,2-Dichloroethane-D4	110%		79-12	25%		
2037-26-5	Toluene-D8	101%		85-11	2%		
460-00-4	4-Bromofluorobenzene	109%		83-11	8%		
(a) Associated CCV outside control limits							

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \,\, analyte \,\, found \,\, in \,\, associated \,\, method \,\, blank$

Report of Analysis

Page 1 of 2

Client Sample ID: Lab Sample ID:

TB122116RS

FA39942-6

Matrix: Method: Project:

AQ - Trip Blank Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled:

12/22/16 Date Received: 12/28/16

Q

Percent Solids: n/a

File ID DF Prep Batch **Analytical Batch** Analyzed By Prep Date Run #1 J0981958.D 1 01/04/17 DP VJ5532 n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB122116RS Lab Sample ID:

FA39942-6

Date Sampled: 12/22/16 Date Received: 12/28/16

Matrix: Method: AQ - Trip Blank Water SW846 8260C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL MDL Unit		Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide a	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0 0.20 ug/l			
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/I	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	100%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	115%		79-12	25%	
2037-26-5	Toluene-D8	102%		85-11	2%	
460-00-4	4-Bromofluorobenzene	109%		83-11		
(a) A annointe	d CCV autaida aantuul limita					1

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

DP

Page 1 of 2

Client Sample ID:

EB122316 FA39942-7

Lab Sample ID:

AQ - Equipment Blank

DF

1

Matrix: Method:

SW846 8260C

File ID

J0981959.D

Date Sampled:

12/23/16 Date Received: 12/28/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

01/04/17

Prep Batch n/a

Q

Prep Date

n/a

Analytical Batch VJ5532

Run #1 Run #2

Purge Volume

Run #1 Run #2 5.0 ml

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/I
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/I
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	I,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/I
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: Lab Sample ID:

EB122316 FA39942-7

Matrix:

Project:

AQ - Equipment Blank

Method:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 12/23/16 Date Received: 12/28/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide ^a	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/I	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	100%		83-13	18%	
17060-07-0	1,2-Dichloroethane-D4	111%		79-12	25%	
2037-26-5	Toluene-D8	101%		85-1	12%	
460-00-4	4-Bromofluorobenzene	108%		83-1	18%	GE.

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

DP

Prep Date

n/a

Page 1 of 2

Analytical Batch

VJ5532

Client Sample ID: FB122316 Lab Sample ID:

FA39942-8

Matrix: Method:

Project:

AQ - Field Blank Water

DF

1

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Analyzed

01/04/17

Date Sampled: 12/23/16

n/a

Q

Date Received: 12/28/16

Percent Solids: n/a

Prep Batch

Run #1 Run #2

Purge Volume

Run #1

5.0 ml

File ID

J0981960.D

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/I
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

Méndez 1(# 188

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: FB122316

Matrix:

Method:

Project:

Lab Sample ID: FA39942-8

AQ - Field Blank Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 12/23/16 Date Received: 12/28/16

Q

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Unit	
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide ^a	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	0.20	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	2.0			
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50 ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# I	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	97%		83-1		
17060-07-0	1,2-Dichloroethane-D4	110%		79-1	25%	
2037-26-5	Toluene-D8	101%		85-1	12%	
460-00-4	4-Bromofluorobenzene	104%		83-1	18%	
(a) Ai	1.007					

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: Lab Sample ID:

MW-19 FA39942-9

AQ - Ground Water

Matrix: Method:

SW846 8260C

Project:

Date Sampled: 12/23/16

Date Received: 12/28/16

Percent Solids: n/a

BMSMC, Building 5 Area, Humacao, PR

Run #1

J0981996.D

DF 50

Analyzed 01/05/17

By DP Prep Date n/a

Prep Batch n/a

Q

Analytical Batch

VJ5535

Run #2

Purge Volume

Run #1 Run #2 5.0 ml

File ID

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	1300	500	ug/l
71-43-2	Benzene	ND	50	16	ug/l
100-44-7	Benzyl Chloride	ND	100	18	ug/l
74-97-5	Bromochloromethane	ND	50	23	ug/l
75-27-4	Bromodichloromethane	ND	50	12	ug/l
75-25-2	Bromoform	ND	50	20	ug/l
78-93-3	2-Butanone (MEK)	ND	250	100	ug/l
75-15-0	Carbon Disulfide	ND	100	27	ug/l
56-23-5	Carbon Tetrachloride	ND	50	18	ug/l
108-90-7	Chlorobenzene	ND	50	10	ug/l
75-00-3	Chloroethane	ND	100	33	ug/l
67-66-3	Chloroform	ND	50	15	ug/l
110-82-7	Cyclohexane	ND	50	20	ug/l
124-48-1	Dibromochloromethane	ND	50	14	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	250	52	ug/l
106-93-4	1,2-Dibromoethane	ND	100	14	ug/l
75-71-8	Dichlorodifluoromethane	ND	100	25	ug/l
95-50-1	1,2-Dichlorobenzene	ND	50	16	ug/l
541-73-1	1,3-Dichlorobenzene	ND	50	11	ug/l
106-46-7	1,4-Dichlorobenzene	ND	50	13	ug/l
75-34-3	1,1-Dichloroethane	ND	50	17	ug/l
107-06-2	1,2-Dichloroethane	ND	50	16	ug/l
75-35-4	1,1-Dichloroethylene	ND	50	16	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	50	14	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	50	11	ug/l
78-87-5	1,2-Dichloropropane	ND	50	21	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	50	15	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	50	11	ug/l
100-41-4	Ethylbenzene	3020	50	18	ug/l
76-13-1	Freon 113	ND	50	24	ug/l
591-78-6	2-Hexanone	ND	500	100	ug/l
98-82-8	Isopropylbenzene	14.2	50	11	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-19

FA39942-9

Lab Sample ID: Matrix:

AQ - Ground Water

Method: Project:

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 12/23/16

Date Received: 12/28/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	50	11	ug/l	
79-20-9	Methyl Acetate	ND	1000	250	ug/l	
74-83-9	Methyl Bromide	ND	100	29	ug/l	
74-87-3	Methyl Chloride	ND	100	25	ug/l	
108-87-2	Methylcyclohexane	ND	50	22	ug/l	
75-09-2	Methylene Chloride	ND	250	100	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	250	50	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	50	11	ug/l	
100-42-5	Styrene	ND	50	11	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	1000	260	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	1000	270	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	50	15	ug/l	
127-18-4	Tetrachloroethylene	ND	50	11	ug/l	
109-99-9	Tetrahydrofuran	ND	250	80	ug/l	
108-88-3	Toluene	49.7	50	15	ug/l	J
87-61-6	1,2,3-Trichlorobenzene	ND	100	31	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	100	25	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	50	12	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	50	23	ug/l	
79-01-6	Trichloroethylene	ND	50	17	ug/l	
75-69-4	Trichlorofluoromethane	ND	100	25	ug/l	
95-63-6	1,2,4-Trimethylbenzene	32.1	50	16	ug/l	J
75-01-4	Vinyl Chloride	ND	50	20	ug/l	
	m,p-Xylene	6600	100	23	ug/l	
95-47-6	o-Xylene	387	50	13	ug/i	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		83-1	18%	

ND = Not detected

2037-26-5

460-00-4

MDL = Method Detection Limit

111%

105%

107%

RL = Reporting Limit

E = Indicates value exceeds calibration range

17060-07-0 1,2-Dichloroethane-D4

Toluene-D8

4-Bromofluorobenzene

J = Indicates an estimated value

79-125%

85-112%

83-118%

B = Indicates analyte found in associated method blank

Report of Analysis

By

DP

Page 1 of 2

Client Sample ID: TB122316NR Lab Sample ID:

FA39942-10

Matrix: Method: AQ - Trip Blank Water

SW846 8260C

DF

1

Date Received: 12/28/16

Date Sampled: 12/23/16

n/a

Prep Date

Percent Solids: n/a

n/a

Q

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

01/04/17

Prep Batch

Analytical Batch VJ5532

Run #1

Run #2

Purge Volume

File ID

J0981962.D

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TB122316NR Lab Sample ID: FA39942-10

Matrix: AQ - Trip Blank Water SW846 8260C

Method:

Project: BMSMC, Building 5 Area, Humacao, PR Date Sampled: 12/23/16 Date Received: 12/28/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result RL MDL		Units	Q	
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide a	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	98%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	111%		79-12	25%	
2037-26-5	Toluene-D8	99%		85-1	12%	

(a) Associated CCV outside control limits.

4-Bromofluorobenzene

ND = Not detected

460-00-4

MDL = Method Detection Limit

101%

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

83-118%

B = Indicates analyte found in associated method blank

Page 1 of 2

Report of Analysis

Ву

DP

n/a

Client Sample ID: MW-16 Lab Sample ID:

SGS Accutest LabLink@174179 13:43 11-Jan-2017

Matrix:

FA39942-11 AQ - Ground Water

Method: Project:

DF

1

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Analyzed

01/04/17

Q

Date Sampled: 12/23/16 Date Received: 12/28/16

Percent Solids: n/a

Prep Date Prep Batch **Analytical Batch** VJ5532 n/a

Run #1 Run #2

Purge Volume

J0981963.D

File ID

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	6.6	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	16.5	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: MW-16 Lab Sample ID:

FA39942-11

Date Sampled: 12/23/16

Matrix: Method:

AQ - Ground Water SW846 8260C

Date Received: 12/28/16

Project:

BMSMC, Building 5 Area, Humacao, PR

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	mpound Result RL MDL		MDL	Units	Q
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide ^a	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0 1.4 ug/		ug/l	
108-88-3	Toluene	ND	1.0 0.20 ug/l			
87-61-6	1,2,3-Trichlorobenzene	ND			ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	96%		83-11	18%	
17060-07-0	1,2-Dichloroethane-D4	107%		79-12		
2037-26-5	Toluene-D8	101%		85-11		
460-00-4	4-Bromofluorobenzene	106%		83-11	18%	

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: TB122316 Lab Sample ID:

FA39942-12

Matrix: Method: Project:

AQ - Trip Blank Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 12/23/16

Date Received: 12/28/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	J0981964.D	1	01/04/17	DP	n/a	n/a	VJ5532

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	25	10	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
100-44-7	Benzyl Chloride	ND	2.0	0.44	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.42	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.46	ug/l
78-93-3	2-Butanone (MEK)	ND	5.0	2.6	ug/l
75-15-0	Carbon Disulfide	ND	2.0	0.23	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.30	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.63	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
110-82-7	Cyclohexane	ND	1.0	0.26	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.26	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.81	ug/l
106-93-4	1,2-Dibromoethane	ND	2.0	0.33	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.27	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.24	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.39	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.28	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.22	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.31	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.34	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.26	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.25	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.25	ug/l
76-13-1	Freon 113	ND	1.0	0.32	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.33	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID:

TB122316

Lab Sample ID:

FA39942-12 AQ - Trip Blank Water

Matrix: Method:

SW846 8260C

Project: BMSMC, Building 5 Area, Humacao, PR Date Sampled: 12/23/16

Q

Date Received: 12/28/16

Percent Solids: n/a

VOA TCL List (SOM02.0)

CAS No.	Compound	Result	RL	MDL	Units	
99-87-6	p-Isopropyltoluene	ND	1.0	0.28	ug/l	
79-20-9	Methyl Acetate	ND	20	5.0	ug/l	
74-83-9	Methyl Bromide a	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
108-87-2	Methylcyclohexane	ND	1.0	0.23	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.4	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.24	ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	20	9.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.33	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
109-99-9	Tetrahydrofuran	ND	5.0	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.51	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.37	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.27	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	0.20	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.31	ug/l	
	m,p-Xylene	ND	2.0	0.30	ug/l	
95-47-6	o-Xylene	ND	1.0	0.26	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	S	
1868-53-7	Dibromofluoromethane	96%		83-11		
17060-07-0	1,2-Dichloroethane-D4	108%		79-12		
2037-26-5	Toluene-D8	102%		85-11	2%	
460-00-4	4-Bromofluorobenzene	113%		83-11	8%	
(a) Accociata	d CCV autside central limits					

(a) Associated CCV outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA39942

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, Humacao, PR

Sample FA39942-11MS FA39942-11MSD FA39942-11	File ID J0981965.D J0981966.D J0981963.D	DF 1 1	Analyzed 01/04/17 01/04/17 01/04/17	By DP DP DP	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VJ5532 VJ5532 VJ5532
1							

The QC reported here applies to the following samples:

FA39942-1, FA39942-2, FA39942-3, FA39942-4, FA39942-5, FA39942-6, FA39942-7, FA39942-8, FA39942-10, FA39942-11, FA39942-12

		FA39942-11	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
67-64-1	Acetone	ND	125	128	102	125	123	98	4	50-147/21
71-43-2	Benzene	ND	25	32.2	129*	25	28.8	115	11	81-122/14
100-44-7	Benzyl Chloride	ND	25	21.2	85	25	17.4	70	20*	54-122/18
74-97-5	Bromochloromethane	ND	25	23.9	96	25	21.7	87	10	76-123/14
75-27-4	Bromodichloromethane	ND	25	25.8	103	25	21.7	87	17	79-123/19
75-25-2	Bromoform	ND	25	18.5	74	25	15.9	64*	15	66-123/21
78-93-3	2-Butanone (MEK)	ND	125	143	114	125	132	106	8	56-143/18
75-15-0	Carbon Disulfide	ND	25	24.7	99	25	20.4	82	19	66-148/23
56-23-5	Carbon Tetrachloride	ND	25	24.8	99	25	21.6	86	14	76-136/23
108-90-7	Chlorobenzene	ND	25	27.7	111	25	24.0	96	14	82-124/14
75-00-3	Chloroethane	ND	25	48.4	194*	25	40.0	160*	19	62-144/20
67-66-3	Chloroform	ND	25	27.4	110	25	23.8	95	14	80-124/15
110-82-7	Cyclohexane	ND	25	30.0	120	25	26.3	105	13	73-138/18
124-48-1	Dibromochloromethane	ND	25	23.9	96	25	19.7	79	19	78-122/19
96-12-8	1,2-Dibromo-3-chloropropane	ND	25	24.9	100	25	24.8	99	0	64-123/18
106-93-4	1,2-Dibromoethane	ND	25	27.4	110	25	24.9	100	10	75-120/13
75-71-8	Dichlorodifluoromethane	ND	25	35.7	143	25	33.9	136	5	42-167/19
95-50-1	1,2-Dichlorobenzene	6.6	25	34.3	111	25	29.0	90	17*	82-124/14
541-73-1	1,3-Dichlorobenzene	ND	25	28.3	113	25	24.6	98	14	84-125/14
106-46-7	1,4-Dichlorobenzene	ND	25	28.5	114	25	24.5	98	15	78-120/15
75-34-3	1,1-Dichloroethane	ND	25	32.5	130*	25	28.6	114	13	81-122/15
107-06-2	1,2-Dichloroethane	ND	25	29.8	119	25	25.8	103	14	75-125/14
75-35-4	1,1-Dichloroethylene	ND	25	31.7	127	25	28.5	114	11	78-137/18
156-59-2	cis-1,2-Dichloroethylene	ND	25	27.5	110	25	24.3	97	12	78-120/15
156-60-5	trans-1,2-Dichloroethylene	ND	25	32.3	129*	25	27.3	109	17	76-127/17
78-87-5	1,2-Dichloropropane	ND	25	29.7	119	25	26.7	107	11	76-124/14
10061-01-5	cis-1,3-Dichloropropene	ND	25	27.6	110	25	22.7	91	19	75-118/23
		ND	25	29.7	119	25	24.2	97	20	80-120/22
100-41-4	Ethylbenzene	ND	25	32.0	128*	25	28.0	112	13	81-121/14
76-13-1	Freon 113	16.5	25	43.9	110	25	38.5	88	13	72-134/20
591-78-6	2-Hexanone	ND	125	152	122	125	137	110	10	61-129/18
98-82-8	Isopropylbenzene	ND	25	29.6	118	25	25.4	102	15	83-132/15
99-87-6	p-Isopropyltoluene	ND	25	33.3	133*	25	28.3	113	16	79-130/16
79-20-9	Methyl Acetate	ND	125	140	112	125	123	98	13	65-126/18
74-83-9	Methyl Bromide	ND	25	32.7	131	25	29.0	116		59 143/19
74-87-3	Methyl Chloride	ND	25	42.9	172*	25	37.8	151		53/19
	J ·	_						3	1	100

^{* =} Outside of Control Limits.

Page 2 of 2

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA39942

Account:

AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Building 5 Area, Humacao, PR

The QC reported here applies to the following samples:

FA39942-1, FA39942-2, FA39942-3, FA39942-4, FA39942-5, FA39942-6, FA39942-7, FA39942-8, FA39942-10, FA39942-11, FA39942-12

		FA39942-11	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
108-87-2	Methylcyclohexane	ND	25	30.4	122	25	26.2	105	15	76-129/17
75-09-2	Methylene Chloride	ND	25	30.3	121	25	26.3	105	14	69-135/16
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	125	148	118	125	131	105	12	66-122/16
1634-04-4	Methyl Tert Butyl Ether	ND	25	27.0	108	25	23.9	96	12	72-117/14
100-42-5	Styrene	ND	25	30.3	121*	25	25.6	102	17	78-119/23
75-85-4	Tert-Amyl Alcohol	ND	250	251	100	250	213	85	16	65-124/23
75-65-0	Tert-Butyl Alcohol	ND	250	399	160*	250	346	138*	14	63-129/27
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	29.7	119	25	26.2	105	13	72-120/14
127-18-4	Tetrachloroethylene	ND	25	22.5	90	25	19.8	79	13	76-135/16
109-99-9	Tetrahydrofuran	ND	25	32.8	131*	25	29.2	117	12	56-122/21
108-88-3	Toluene	ND	25	32.4	130*	25	27.6	110	16*	80-120/14
87-61-6	1,2,3-Trichlorobenzene	ND	25	26.5	106	25	24.1	96	9	68-131/25
120-82-1	1,2,4-Trichlorobenzene	ND	25	26.4	106	25	23.9	96	10	73-129/20
71-55-6	1,1,1-Trichloroethane	ND	25	25.8	103	25	23.0	92	11	75-130/16
79-00-5	1,1,2-Trichloroethane	ND	25	30.6	122*	25	26.6	106	14	76-119/14
79-01-6	Trichloroethylene	ND	25	29.9	120	25	26.3	105	13	81-126/15
75-69-4	Trichlorofluoromethane	ND	25	48.0	192*	25	42.6	170*	12	71-156/21
95-63-6	1,2,4-Trimethylbenzene	ND	25	32.8	131*	25	28.1	112	15	79-120/18
75-01-4	Vinyl Chloride	ND	25	44.0	176*	25	41.1	164*	7	69-159/18
	m,p-Xylene	ND	50	59.2	118	50	49.9	100	17*	79-126/15
95-47-6	o-Xylene	ND	25	29.3	117	25	24.7	99	17*	80-127/14
CAS No.	Surrogate Recoveries	MS	MSD	FA	39942-11	Limits				
1868-53-7	Dibromofluoromethane	93%	101%	969		83-1189	%	, i	OCIABO	
17060-07-0	•	108%	109%	107		79-1259		30		TA.
2037-26-5	Toluene-D8	102%	99%	101	1%	85-1129	%	13		181
460-00-4	4-Bromofluorobenzene	104%	105%	106	3%	83-1189	6	3/2	taci infa	mtc 5

^{* =} Outside of Control Limits.

	COUTEST.			CHAI	N C)F C	CUST	ro)	DY		F	-1	1	3	9	10	1	17	2	PA	GE.	1	of <u>2</u>	_
	FL		4	403 Vineland TEL 40	7-423-670	se C 1 G 30 PAX	407-425		HII				750	Đ.	36	21	04	4	Accepted to	Jan 8	traf if			
Eldevis	Client / Reporting Information			Project		etion		auto	(S.H.S.	200		T.		Req	Lester	Anal	ysis.	100	EST	ODE :	heef)	я,	Matri	x Codes
Company	Name	Project Name		- 30,000			5,000									10000							DW Da	nking Web
inders:	on Mulholland & Associates		roundwater Bar	npling - On	site We	lbs			_					6 .	- 1								GW Gr	ound Water
		Street					Selection of the least	4.1,545	-	Salmin.	-	811011											SW Su	rteca Wate
Par Par	estcheeter Ayenue, Suits 417	City		State	Compa	Information in Name	on (If diff	erant tr	em filep	(03 PM		-		3									St.	Sludge
urchas	H NY 105	7 Humscao		PR										0 3									0	Sedment I-OI
Yoleca Co		Prosect #	370		Street A	GOTHN:		12,80				2 10		1									All	igner Liquid R = Alf
Terry hone if	Taylor Fax#	Chart Purchase	Order #	_	Cay	_	-	5	Line .	-	Zo	-									- 1		WP	Other Sold - Whoe
	61-0400	4_2	07700		1			0.3	300										- 6				EB Equa	eid Blank proent Star
Sampler()	t Name(s) Phone If	Project Manager			Attention	n.						-		-	뵻	٦.								nse Blank no Blank
_	1-1-1-	Terry Taylor	1	Cameran	_	-	_	-	Number	proper	ved both		3	E .	DZW:	ğ	\$	ă	发					
	Field ID / Point of Collection	MEDINO Varia	Date	Torre	Sampled by		e of botto	Q §	10	W	ArifOre	DICORE	V&256TCL.20	VMS+124TMB	VMS+BNZCH	VAISHIPTOLU	VRS+TAA	VMS+TBA	VMS+THF				LABU	BE ONLY
1	MW-205		12-22-16	1311	RS	54	3	3	11	Ħ			U	X	V	X	V	X	X					
2	FR 12 2 2 1/6		12-22-14	1420	1.0	FB	3	13	11	H			文	V	V	4	V	1	1/					
3	MW-20D	1	12 2241	15 27	Ac	SW	3	7	++	H	++		V	V	0	\$	V	S	V				1	
4	RAIDE	+	10-79-16	1604	11A	6W	3	1	++	+	++	Н	\Diamond	1	₹	ᢓ	1	V	₩	_	\vdash	-	1	
5	TB 12 22/6 NR B	+	10-22-16	IDUT	IN.	1 3	2	12	++	H	-	+	₹	\Diamond	1	V	\Rightarrow	₩.	15	-		_		
-	10 15 2216 1110	+	12-14-18	1001	-	TB	2	1	++	Н	+	+	0	3	4	5	\approx	1	1		-	-	-	_
4	13 12 22 16 15 3	+	12 -2 16	15	10	TB	_	100	++	₩	+	-	♦	5	0	9	0	1	8		-	-	+	
	F-6 12 23/6	+	12 2341	10-8	INV	EB	-	3	++	H	+	-	->	*	X	5	4	P	15	\vdash	-		+	
8	FB 122316	1	12-23 16	1519	RS	FB	3	3	+	H	-	-	X	×	X	Ş	X	×	X			-	-	
9	MW-19	-	12-23-6	11-8	NR		13	3	11	Н	\perp	1	X	X	Δ	Ķ.	X	X	X		-	-	+	
10	TB 1223/6NK		12-23-16	1458	1	18	2	12	1	Н	-		X	4	X	7	X	X	\sim		_			
tric .	The State of the S	NAME AND POST OF	THE PROPERTY.	Special 2-2	3.5	PROPS.	(364)	1	8	4	4 57	推研	新 有。		510	400	W.	Sept.	Z-day		1994	能行	4 57.50	44.2
1	10000000000000000000000000000000000000	A SERVICE	MARKET SEE	Maria .	法制	Spile.	1140	11	100	厚	511	H A	100	學	(First	11.76	0.00		1007	門中	Seite	11 0	是 6657号	Ballion.
ENGY FO	Turnersund Time (business days) Bld. 16 Business Days	Approved By (Ass.	The Constitution			Commerc			rgabta in		tion .	Catego	79-07	Panel C	-0.00		10.00	Con	ments	/ Specu	il instruc	anos -	(P0495)	1 - 1 - 1000
	Md. 16 Business Days (by Contract only)	white and all facts:	meet prof: Fallet:			Commerc				Ħ		Catego												
] 10 Dey RUSH] 8 Day RUSH		74-17		_	FULLT1		41			State 7													
] 3 Day EMERGENCY					NJ Reduc				Н	Ciber	(press)			-	-			-	-	_			
	2 Day EMERGENCY				-		Commer			Only						_	_	· ·						
Emerg	1 Day EMERGENCY THE TIA THE EVALUATION VIA LEGISTE	7.00	_				Commer NJ Redu						Raw da	rte :										
Sues		54	mple Custody m	ast be docum	nented 5	ulow vac		ample	chang	e pos					delive				2002	18.0	5		4	
W	JUM Rue 1217	16/11/5	TECT	EX				7	dished by	r.	Fx	_				Date To	mei		Antair 2	≈4 8 yr]		-0	2	2/28/16
Rajean	lated by Bampior; Gate Three:		Received By:	7.				Pales	unibed B	ri ,	• /					Date To	m.		Rosalv 4	ed By:	U	7		7-71
Rednes	shed by: Deta Time:		Received By:					Create	· 8	r		9	Imad		Proserv		applit.	a de la companya de l			On its	Ç4	olor Yemp.	3.1
5			19					1 5	פונ	_	_	u	Filot Inter	ot		п							-	

FA39942: Chain of Custody

Page 1 of 4

Contract Name	FL		4	435 Vincland P TEJ 407	load, Sus 1425-670	te C-15, O	riendo, 13 407-425-	urida 3 0707	2911				7	7 %(36	21	101	4	Accepted to	nger Gans				
### Approximate Approximate	Client / Reporting Information	R ATTE		Project				6010	147		क्ट <i>े</i> त	W.	d Jag	Req	veslet	I Anal	ysis (200 T	ESTO	300¢	heet)	-	14 /-	Matrix Code
Section Sect	pany Name	Project Name:																						DW - Drinking W
100 100	erson Mulholland & Associates		roundwater Ser	npling • On	ite We	lls.		ADD TO	W tale	4-4 th at	and the state of								-					GW - Ground W WW - Water SW - Surface W
Temper							on (of cluff)	pewert fi	rum Re	eport to)													SO - Sol SL- Studge
Terry Taylor Fed Process Pro	·	PACE STREET			Compan	у напи																		SEO-Sedemer Os - Os
1	ed Cornell E-mail				Street A	Ddres4							1											LIQ - Other Liq. Alfi - Air
### ### ##############################		Client Purchase	Order 8		Cay				ilade		Σι	-	-											SOL - Other So WP - Wipe
Tarry Taylor Tarr													4								l			FB-Field Day EB-Equipment B RS- Rinae Blar
MW - IG M5	steris Nethela) Phone #				Alleritor	k.							R	暑	륋	3								R9-Rmas Blar 19-Trip Beni
MW - I G M S		Tanay Vagan		Collector				H	Pharme	o at prai	ones to	int iu	그 별	124	E NE	TT4	1AA	Ē	ŧ	Н				
MW - I G M S	Suid If / Dont of Collection	MONOTON A		*	Sampad	l l			ğ	ğ y	1 9	100	1 8	ZM S	Š	VMS.	VIAS	SE SE	VIES					LAB USE ON
MW - I G M S	AA IA I — IC-	M.Coroca van P	7/23/0			-		_	= =		1012	1	17	V	V	×	V	V	X	\Box		_		
TRIZZIORS	MW-16MS		12-73-11	1573		20		++-	- -	-	++	\vdash	仗	×	X	V	文	Ż	攵					
TIME DESIGNATION TO THE CAMERINA DAY OF THE PROPERTY OF THE PR			12 77 16	1522		CIV		+	+	H	$\dagger \dagger$	11	1/2	不	父	X	V	V	X	Н				
Tumburs Time Diamen days Approve By Ap			12-23-16	1522	-				十		T	11	区	X	×	文	K	文	X					
Townson Time Passes days Date Designed in the State of the State o	19.19		12 -510	17.66		7.7.	_	П	+	\vdash	\forall	\Box	1											
Townson Time Passes days Date Designed in the State of the State o		- 2		-																				
Turnered Time Dames days Data Despector Information Data Despector In			da uson					П				\prod												
Townson Time Passes days Date Designed in the State of the State o									$\prod_{i=1}^{n}$			П	\perp									\square		
Turnered Time Dames days Data Despector Information Data Despector In										Ш		Ш										\dashv		
Turners The Pares Says Sid. 16 Substress Days Ed. 16 Substress Days Sid. 16			(n)				2.0	Ц			Щ	Ц		_	arterial st	lar inch	100		n n Sheh	120.43	TO COMPA		25.54	3-17-78 TE
Turner and Time Dunness Days Continents Special Instructions Spe	是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	AND STATE	的原門各門	4种性的。	문제하다	2005	diam'r.	Ш	ં હો	12 4	N S		12.34	444		PERMIT	SELECT MANUAL MANUA MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUAL MANUA MANU		50	St. Park	Michigan Michigan	Sealer	200	Latin 1
	and the second second second	SERVICE !	41111		1700	77	Date		7	Indoor	12. 2		State of the state	208			3731.	Cort	arrents	/ Boecle	Instruc	BITOSTS	(14) (14)	Control of the
10 Day RUSH	X Sid- 16 Susinosu Days	Approved By IA440					1) "A" late	Levoi !	9)		MYA													
S Day RUSH			_					_	2)	Ξ	_												_	
2 Day EMEMBLINGY Commercial 'A" = Results Only	☐ 8 Day RUSH					AL) Reduc	ed				-		1		<u> </u>			_					_	
						Commerc		cami "A"	= Res	_	_		_											
1 Day EMERGENCY Communical "8" - Rejuits - QC Summary Emergency & Ruin "1/A data syndrote VA Lazares MURaducard - Rejuits - QC Summary - Partial Roundries	1 Day EMERIGENCY		_										and Property											
Sample Custody must be documented below each time sumples Change possession, including courter delivery. Code Time Research By: Code Time Research By: Code Time		Se	mple Custody mi	sat be docum	unted b	low sac	h time s	amph	16 CB4	nge po	reseasi	on inc	luding	ourter	delive	γ.			1500	inere!	-	POPL OF	i Carr	, 1000

FA39942: Chain of Custody Page 2 of 4

EXECUTIVE NARRATIVE

SDG No:

FA39942

Laboratory:

Accutest, Florida

Analysis:

SW846-8260C

Number of Samples:

14

Location:

BMSMC - Building 5 Area

Humacao, PR

SUMMARY:

Fourteen (14) samples were analyzed for volatile organic compounds (VOA TCL List (SOM02.0)) by method SW846-8260C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Initial calibration, initial calibration verification, continuing calibration verification, and closing calibration check within method and guidance document performed criteria except in the cases described in the Data Review Worksheet.

The results for the compounds with continuing calibration verification % differences outside the guidance document performance criteria were qualified as estimated (J or UJ):

2. MS/MSD % recoveries and RPD within laboratory control limits except in the cases described the Data Review Worksheet.

No qualification made based on RPD results or having one of MS/MSD % recovery outside the laboratory control limits; professional judgment.

Results not meeting the MS/MSD % recovery criteria are qualified as estimated (J or UJ) is sample FA39942-11.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

January 17, 2017

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA39942-1

Sample location: BMSMC Building 5 Area

Sampling date: 12/22/2016

Matrix: Groundwater

METHOD: 8260C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	υ	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes

trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes	
1,2-Dichloropropane	1.0	ug/L	1.0	140	U	Yes	
cis-1,3-Dichloropropene	1.0	ug/L	1.0	2.53	U	Yes	
trans-1,3-Dichloropropene	1.0	ug/L	1.0	(2)	U	Yes	
Ethylbenzene	1.0	ug/L	1.0	383	U	Yes	
Freon 113	1.0	ug/L	1.0	10	U	Yes	
2-Hexanone	10	ug/L	1.0	-	U	Yes	
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes	
p-Isopropyltoluene	1.0	ug/L	1.0	-	U	Yes	
Methyl Acetate	20	ug/L	1.0	-	U	Yes	
Methyl Bromide	2.0	ug/L	1.0	100	U	Yes	
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes	
Methylcyclohexane	1.0	ug/L	1.0	-	U	Yes	
Methylene chloride	5.0	ug/L	1.0	V 250	U	Yes	
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	121	υ	Yes	
Methyl Tert Butyl Ether	2.9	ug/L	1.0	; - ;	-	Yes	
Styrene	1.0	ug/L	1.0	654	U	Yes	
Tert-Amyl Alcohol	20	ug/L	1.0	-	U	Yes	
Tert-Butyl Alcohol	20	ug/L	1.0	() - ()	UJ	Yes	
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes	
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes	
Tetrahydrofuran	5.0	ug/L	1.0		U	Yes	
Toluene	1.0	ug/L	1.0	-	U	Yes	
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	(-	U	Yes	
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	0.70	U	Yes	
1,1,1-Trichloroethane	1.0	ug/L	1.0	525	U	Yes	
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	UJ	Yes 🗸 🖊	
Trichloroethene	1.0	ug/L	1.0		U	Yes	
Trichlorofluoromethane	2.0	ug/L	1.0	7-1	U	Yes	
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	-	U	Yes	
Vinyl chloride	1.0	ug/L	1.0	25	U	Yes	
m,p-Xylene	2.0	ug/L	1.0	527	U	Yes	
o-Xylene	1.0	ug/L	1.0	-	U	Yes	

Sample ID: FA39942-2

Sample location: BMSMC Building 5 Area

Sampling date: 12/22/2016

Matrix: AQ - Field Blank Water

METHOD: 8260C

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0		U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	_	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	_	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes

1,2-Dichloropropane	1.0	ug/L	1.0	20	U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	ā)	U	Yes
Ethylbenzene	1.0	ug/L	1.0	21	U	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	10	ug/L	1.0	-	U	Yes
Isopropylbenzene	1.0	ug/L	1.0	41	U	Yes
p-Isopropyltoluene	1.0	ug/L	1.0	-	U	Yes
Methyl Acetate	20	ug/L	1.0	-	U	Yes
Methyl Bromide	2.0	ug/L	1.0	-1	U	Yes
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	1.0	ug/L	1.0	23	U	Yes
Methylene chloride	5.0	ug/L	1.0	+1	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	71	U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0	*	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	7:	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	21	UJ	Yes 🗸
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0		U	Yes
Toluene	1.0	ug/L	1.0	75	ប	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	÷.	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	70	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	2	UJ	Yes
Trichloroethene	1.0	ug/L	1.0	+	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	70	U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	21	U	Yes
Vinyl chloride	1.0	ug/L	1.0	-	U	Yes
m,p-Xylene	2.0	ug/L	1.0	-	U	Yes
o-Xylene	1.0	ug/L	1.0	21	U	Yes

Sample ID: FA39942-3

Sample location: BMSMC Building 5 Area

Sampling date: 12/22/2016 Matrix: Groundwater

METHOD: 8260C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1	-	U	Yes
Benzene	0.22	ug/L	1	J	J	Yes
Benzyl Chloride	2.0	ug/L	1	-	U	Yes
Bromochloromethane	1.0	ug/L	1	-	U	Yes
Bromodichloromethane	1.0	ug/L	1	-	U	Yes
Bromoform	1.0	ug/L	1	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1	-	U	Yes
Carbon disulfide	0.39	ug/L	1	J	J	Yes
Carbon tetrachloride	1.0	ug/L	1	-	U	Yes
Chlorobenzene	1.0	ug/L	1	-	U	Yes
Chloroethane	2.0	ug/L	1	-	U	Yes
Chloroform	1.0	ug/L	1	-	U	Yes
Cyclohexane	0.34	ug/L	1	J	J	Yes
Dibromochloromethane	1.0	ug/L	1	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1	-	U	Yes

trans-1,2-Dichloroethene	1.0	ug/L	1	-	U	Yes	
1,2-Dichloropropane	1.0	ug/L	1	-	U	Yes	
cis-1,3-Dichloropropene	1.0	ug/L	1	-	U	Yes	
trans-1,3-Dichloropropene	1.0	ug/L	1	-	U	Yes	
Ethylbenzene	1.0	ug/L	1	-	U	Yes	
Freon 113	1.0	ug/L	1		U	Yes	
2-Hexanone	10	ug/L	1	-	U	Yes	
Isopropyibenzene	1.0	ug/L	1	-	U	Yes	
p-Isopropyltoluene	1.0	ug/L	1	1.73	U	Yes	
Methyl Acetate	20	ug/L	1	124	U	Yes	
Methyl Bromide	2.0	ug/L	1	-	υ	Yes	
Methyl Chloride	2.0	ug/L	1	(5.0	U	Yes	
Methylcyclohexane	1.0	ug/L	1	-	U	Yes	
Methylene chloride	5.0	ug/L	1	10.0	U	Yes	
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1	-	U	Yes	
Methyl Tert Butyl Ether	13.2	ug/L	1		-	Yes	
Styrene	1.0	ug/L	1	1 - 1	υ	Yes	
Tert-Amyl Alcohol	20	ug/L	1	-	U	Yes	
Tert-Butyl Alcohol	20	ug/L	1	-		Yes	
1,1,2,2-Tetrachloroethane	1.0	ug/L	1	-	U	Yes	
Tetrachloroethene	1.0	ug/L	1	-	U	Yes	
Tetrahydrofuran	5.0	ug/L	1	-	U	Yes	
Toluene	1.0	ug/L	1	-	υ	Yes	
1,2,3-Trichlorobenzene	2.0	ug/L	1	- 2	U	Yes	
1,2,4-Trichlorobenzene	2.0	ug/L	1	-	U	Yes	
1,1,1-Trichloroethane	1.0	ug/L	1		U	Yes	
1,1,2-Trichloroethane	1.0	ug/L	1		UJ	Yes 🗸	
Trichloroethene	1.0	ug/L	1		U	Yes	
Trichlorofluoromethane	2.0	ug/L	1	-	U	Yes	
1,2,4-Trimethylbenzene	1.0	ug/L	1		U	Yes	
Vinyl chloride	1.0	ug/L	1	-	U	Yes	
m,p-Xylene	2.0	ug/L	1	-	U	Yes	
o-Xylene	1.0	ug/L	1	-	U	Yes	

Sample location: BMSMC Building 5 Area

Sampling date: 12/22/2016
Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	บ	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	•	บ	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes

1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
Ethylbenzene	1.0	ug/L	1.0	5	U	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	10	ug/L	1.0	5	U	Yes
Isopropylbenzene	1.0	ug/L	1.0	2	U	Yes
p-Isopropyltoluene	1.0	ug/L	1.0	~	U	Yes
Methyl Acetate	20	ug/L	1.0	-	U	Yes
Methyl Bromide	2.0	ug/L	1.0	-	U	Yes
Methyl Chloride	2.0	ug/L	1.0		U	Yes
Methylcyclohexane	1.0	ug/L	1.0	-	U	Yes
Methylene chloride	5.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	5	U	Yes
Methyl Tert Butyl Ether	4.3	ug/L	1.0	2	•	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0		U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	<u>u</u> -	UJ	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	Ψ.	U	Yes
Toluene	1.0	ug/L	1.0	5.	U	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	8	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	7:	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	5	UJ	Yes </td
Trichloroethene	1.0	ug/L	1.0	*	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	70	U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	2	U	Yes
Vinyl chloride	1.0	ug/L	1.0	*	U	Yes
m,p-Xylene	2.0	ug/L	1.0	7:	U	Yes
o-Xylene	1.0	ug/L	1.0	2	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/22/2016

Matrix: AQ - Trip Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	ับ	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes

1,2-Dichloropropane	1.0	ug/L	1.0	1	U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0		U	Yes
Ethylbenzene	1.0	ug/L	1.0	-	Ü	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	10	ug/L	1.0	-	U	Yes
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes
p-Isopropyitoluene	1.0	ug/L	1.0	-	U	Yes
Methyl Acetate	20	ug/L	1.0	-	U	Yes
Methyl Bromide	2.0	ug/L	1.0	-	U	Yes
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	1.0	ug/L	1.0	-	U	Yes
Methylene chloride	5.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0		U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0		U	Yes
Styrene	1.0	ug/L	1.0		U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	-	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	-	UJ	Yes 🗸
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	-	U	Yes
Toluene	1.0	ug/L	1.0	0.7	U	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	_	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	UJ	Yes V
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	-	U	Yes
Vinyl chloride	1.0	ug/L	1.0	-	U	Yes
m,p-Xylene	2.0	ug/L	1.0	5,	U	Yes
o-Xylene	1.0	ug/L	1.0	2	U	Yes
		_				

Sample location: BMSMC Building 5 Area

Sampling date: 12/22/2016

Matrix: AQ - Trip Blank Water

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes

1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	17	U	Yes
Ethylbenzene	1.0	ug/L	1.0	- 2	U	Yes
Freon 113	1.0	ug/L	1.0		U	Yes
2-Hexanone	10	ug/L	1.0		U	Yes
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes
p-Isopropyltoluene	1.0	ug/L	1.0	-	U	Yes
Methyl Acetate	20	ug/L	1.0	-	U	Yes
Methyl Bromide	2.0	ug/L	1.0		U	Yes
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	1.0	ug/L	1.0	-	U	Yes
Methylene chloride	5.0	ug/L	1.0		U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0		U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0	<u>_</u>	U	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	-	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	_	UJ	Yes //
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0		U	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	-	U	Yes
Toluene	1.0	ug/L	1.0	-	U	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	2	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	(UJ	Yes 🗸
Trichloroethene	1.0	ug/L	1.0	1.0	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	5	U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	2	U	Yes
Vinyl chloride	1.0	ug/L	1.0	- 2	U	Yes
m,p-Xylene	2.0	ug/L	1.0		U	Yes
o-Xylene	1.0	ug/L	1.0	- 2	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/23/2016

Matrix: AQ - Equipment Blank

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes

1,2-Dichloropropane	1.0	ug/L	1.0	2	U	Yes	
cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes	
trans-1,3-Dichloropropene	1.0	ug/L	1.0	5	U	Yes	
Ethylbenzene	1.0	ug/L	1.0	2	U	Yes	
Freon 113	1.0	ug/L	1.0	-	U	Yes	
2-Hexanone	10	ug/L	1.0	-	U	Yes	
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes	
p-Isopropyltoluene	1.0	ug/L	1.0	-	U	Yes	
Methyl Acetate	20	ug/L	1.0	-	U	Yes	
Methyl Bromide	2.0	ug/L	1.0	-	U	Yes	
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes	
Methylcyclohexane	1.0	ug/L	1.0	2	U	Yes	
Methylene chloride	5.0	ug/L	1.0	-	U	Yes	
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	7.	U	Yes	
Methyl Tert Butyl Ether	1.0	ug/L	1.0	2	U	Yes	
Styrene	1.0	ug/L	1.0	-	U	Yes	
Tert-Amyl Alcohol	20	ug/L	1.0	-	U	Yes	
Tert-Butyl Alcohol	20	ug/L	1.0	~	UJ	Yes 🗸 🖊	
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	- 1	U	Yes	
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes	
Tetrahydrofuran	5.0	ug/L	1.0	-	U	Yes	
Toluene	1.0	ug/L	1.0	-	U	Yes	
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	_	U	Yes	
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes	
1,1,1-Trichloroethane	1.0	ug/L	1.0	5	U	Yes	
1,1,2-Trichloroethane	1.0	ug/L	1.0	4	UJ	Yes 🗸 /	
Trichloroethene	1.0	ug/L	1.0	-	U	Yes	
Trichlorofluoromethane	2.0	ug/L	1.0	7	U	Yes	
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	2	U	Yes	
Vinyl chloride	1.0	ug/L	1.0	=	U	Yes	
m,p-Xylene	2.0	ug/L	1.0	-	U	Yes	
o-Xylene	1.0	ug/L	1.0	-	U	Yes	

Sample location: BMSMC Building 5 Area

Sampling date: 12/23/2016

Matrix: AQ - Field Blank Water

Analyte Name	Result	Units (Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes

cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0		U	Yes
Ethylbenzene	1.0	ug/L	1.0	- 7	U	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	10	ug/L	1.0		U	Yes
Isopropylbenzene	1.0	ug/L	1.0	+	U	Yes
p-Isopropyltoluene	1.0	ug/L	1.0	-	U	Yes
Methyl Acetate	20	ug/L	1.0	-	U	Yes
Methyl Bromide	2.0	ug/L	1.0		U	Yes
Methyl Chloride	2.0	ug/L	1.0		Ų	Yes
Methylcyclohexane	1.0	ug/L	1.0		U	Yes
Methylene chloride	5.0	ug/L	1.0	25	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	(*)	U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0		U	Yes
Styrene	1.0	ug/L	1.0	_	U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	0.00	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	-	(UJ	Yes 🗸
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0		U	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	-	U	Yes
Toluene	1.0	ug/L	1.0	'w):	U	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	372	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	~	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	+1	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0		UJ	Yes
Trichloroethene	1.0	ug/L	1.0	12	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	-	U	Yes
Vinyl chloride	1.0	ug/L	1.0	12%	Ų	Yes
m,p-Xylene	2.0	ug/L	1.0	-	U	Yes
o-Xylene	1.0	ug/L	1.0	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/23/2016
Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	1300	ug/L	50	-	U	Yes
Benzene	50	ug/L	50	-	U	Yes
Benzyl Chloride	100	ug/L	50	-	U	Yes
Bromochloromethane	50	ug/L	50	-	U	Yes
Bromodichloromethane	50	ug/L	50	-	U	Yes
Bromoform	50	ug/L	50	-	U	Yes
2-Butanone (MEK)	250	ug/L	50	-	U	Yes
Carbon disulfide	100	ug/L	50	-	U	Yes
Carbon tetrachloride	10	ug/L	50	-	U	Yes
Chlorobenzene	50	ug/L	50	-	U	Yes
Chloroethane	100	ug/L	50	-	≝UJ	Yes
Chloroform	50	ug/L	50	-	U	Yes
Cyclohexane	50	ug/L	50	-	U	Yes
Dibromochloromethane	50	ug/L	50	-	U	Yes
1,2-Dibromo-3-chloropropane	250	ug/L	50	-	U	Yes
1,2-Dibromoethane	100	ug/L	50	-	U	Yes
Dichlorodifluoromethane	100	ug/L	50	-	U	Yes
1,2-Dichlorobenzene	50	ug/L	50	-	U	Yes
1,3-Dichlorobenzene	50	ug/L	50	-	U	Yes
1,4-Dichlorobenzene	50	ug/L	50	-	U	Yes
1,1-Dichloroethane	50	ug/L	50	-	U	Yes
1,2-Dichloroethane	50	ug/L	50	-	U	Yes
1,1-Dichloroethene	50	ug/L	50	-	U	Yes
cis-1,2-Dichloroethene	50	ug/L	50	-	U	Yes
trans-1,2-Dichloroethene	50	ug/L	50	-	U	Yes

1,2-Dichloropropane	50	ug/L	50	2	U	Yes
cis-1,3-Dichloropropene	50	ug/L	50	-	U	Yes
trans-1,3-Dichloropropene	50	ug/L	50		U	Yes
Ethylbenzene	3020	ug/L	50	~	U	Yes
Freon 113	50	ug/L	50	-	U	Yes
2-Hexanone	500	ug/L	50	8	U	Yes
Isopropylbenzene	14.2	ug/L	50	J	J	Yes
p-Isopropyltoluene	50	ug/L	50	*	U	Yes
Methyl Acetate	1000	ug/L	50	-	U	Yes
Methyl Bromide	100	ug/L	50	-	U	Yes
Methyl Chloride	100	ug/L	50	-	U	Yes
Methylcyclohexane	50	ug/L	50	N 2	U	Yes
Methylene chloride	250	ug/L	50	~	Ū	Yes
4-Methyl-2-pentanone(MIBK)	250	ug/L	50	<i>z</i>	บ	Yes
Methyl Tert Butyl Ether	50	ug/L	50	2	U	Yes
Styrene	50	ug/L	50	-	U	Yes
Tert-Amyl Alcohol	1000	ug/L	50	2	U	Yes
Tert-Butyl Alcohol	1000	ug/L	50	~	UJ	Yes
1,1,2,2-Tetrachloroethane	50	ug/L	50		U	Yes
Tetrachloroethene	50	ug/L	50	-	U	Yes
Tetrahydrofuran	250	ug/L	50		UJ	Yes 🗸
Toluene	49.7	ug/L	50	J	j	Yes
1,2,3-Trichlorobenzene	100	ug/L	50	-	U	Yes
1,2,4-Trichlorobenzene	100	ug/L	50	~	U	Yes
1,1,1-Trichloroethane	50	ug/L	50	17	U	Yes
1,1,2-Trichloroethane	50	ug/L	50	₫.	U	Yes
Trichloroethene	50	ug/L	50	-	U	Yes
Trichlorofluoromethane	100	ug/L	50	0	U	Yes
1,2,4-Trimethylbenzene	32.1	ug/L	50	J	J	Yes
Vinyl chloride	1	ug/L	50		U	Yes
m,p-Xylene	2	ug/L	50	-	U	Yes
o-Xylene	1	ug/L	50	0	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/23/2016

Matrix: AQ - Trip Blank Water

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes

cis-1,3-Dichloropropene	1.0	ug/L	1.0	2	U	Yes	
trans-1,3-Dichloropropene	1.0	ug/L	1.0	_	Ü	Yes	
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes	
Freon 113	1.0	ug/L	1.0	-	U	Yes	
2-Hexanone	10	ug/L	1.0	-	U	Yes	
Isopropylbenzene	1.0	ug/L	1.0	5	U	Yes	
p-Isopropyltoluene	1.0	ug/L	1.0	-	U	Yes	
Methyl Acetate	20	ug/L	1.0	10	U	Yes	
Methyl Bromide	2.0	ug/L	1.0	2	U	Yes	
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes	
Methylcyclohexane	1.0	ug/L	1.0		U	Yes	
Methylene chloride	5.0	ug/L	1.0	<u>u</u>	U	Yes	
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	19	U	Yes	
Methyl Tert Butyl Ether	1.0	ug/L	1.0	-	U	Yes	
Styrene	1.0	ug/L	1.0	14	U	Yes	
Tert-Amyl Alcohol	20	ug/L	1.0	-	υ	Yes	
Tert-Butyl Alcohol	20	ug/L	1.0	-	UJ	Yes V/	
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes	
Tetrachloroethene	1.0	ug/L	1.0		U	Yes	
Tetrahydrofuran	5.0	ug/L	1.0		U	Yes	
Toluene	1.0	ug/L	1.0	~	U	Yes	
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes	
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	2	U	Yes	
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes	
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	UJ	Yes 🗸	
Trichloroethene	1.0	ug/L	1.0	1	U	Yes	
Trichlorofluoromethane	2.0	ug/L	1.0	-	U	Yes	
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	-	U	Yes	
Vinyl chloride	1.0	ug/L	1.0	-	U	Yes	
m,p-Xylene	2.0	ug/L	1.0	*	U	Yes	
o-Xylene	1.0	ug/L	1.0	(4	U	Yes	

Sample location: BMSMC Building 5 Area

Sampling date: 12/23/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	UJ	Yes 🗸
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	6.6	ug/L	1.0	-	-	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes

1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0		U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	Ų	Yes
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes
Freon 113	16.5	ug/L	1.0		-	Yes
2-Hexanone	10	ug/L	1.0		U	Yes
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes
p-Isopropyltoluene	1.0	ug/L	1.0	1175	U	Yes
Methyl Acetate	20	ug/L	1.0	2	U	Yes
Methyl Bromide	2.0	ug/L	1.0	-	U	Yes
Methyl Chloride	2.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	1.0	ug/L	1.0	-	U	Yes
Methylene chloride	5.0	ug/L	1.0	5.6	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0		U	Yes
Tert-Amyl Alcohol	20	ug/L	1.0	-	U	Yes
Tert-Butyl Alcohol	20	ug/L	1.0	(w)	UJ	Yes 🗸
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0		Ų	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	5.0	ug/L	1.0	(*)	U	Yes
Toluene	1.0	ug/L	1.0	- T	U	Yes
1,2,3-Trichlorobenzene	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	*	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	5	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	21	UJ	Yes
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	4	UJ	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	25	U	Yes
Vinyl chloride	1.0	ug/L	1.0	*1	UJ	Yes
m,p-Xylene	2.0	ug/L	1.0	-	Ų	Yes
o-Xylene	1.0	ug/L	1.0	27	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 12/23/2016

Matrix: AQ - Trip Blank Water

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Acetone	25	ug/L	1.0	-	U	Yes
Benzene	1.0	ug/L	1.0	-	U	Yes
Benzyl Chloride	2.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	1.0	ug/L	1.0	-	U	Yes
2-Butanone (MEK)	5.0	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	2.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	5.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	2.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes

cis-1,3-Dichloropropene	1.0	ug/L	1.0	5	U	Yes	
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes	
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes	
Freon 113	1.0	ug/L	1.0	2	U	Yes	
2-Hexanone	10	ug/L	1.0	ē	Ü	Yes	
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes	
p-Isopropyltoluene	1.0	ug/L	1.0	¥	U	Yes	
Methyl Acetate	20	ug/L	1.0	5	U	Yes	
Methyl Bromide	2.0	ug/L	1.0	2	U	Yes	
Methyl Chloride	2.0	ug/L	1.0	~	U	Yes	
Methylcyclohexane	1.0	ug/L	1.0	5.	U	Yes	
Methylene chloride	5.0	ug/L	1.0	2	U	Yes	
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	-	U	Yes	
Methyl Tert Butyl Ether	1.0	ug/L	1.0	5.	U	Yes	
Styrene	1.0	ug/L	1.0	2	U	Yes	
Tert-Amyl Alcohol	20	ug/L	1.0	-	U	Yes	
Tert-Butyl Alcohol	20	ug/L	1.0	2	UJ	Yes 🗸	
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes	
Tetrachloroethene	1.0	ug/L	1.0	5	U	Yes	
Tetrahydrofuran	5.0	ug/L	1.0	-	U	Yes	
Toluene	1.0	ug/L	1.0	÷	บ	Yes	
1,2,3-Trichlorobenzene	2.0	ug/L	1.0		U	Yes	
1,2,4-Trichlorobenzene	2.0	ug/L	1.0	□	U	Yes	
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes	
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	UJ	Yes 🗸	
Trichloroethene	1.0	ug/L	1.0	₫	U	Yes	
Trichlorofluoromethane	2.0	ug/L	1.0	-	U	Yes	
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	-	U	Yes	
Vinyl chloride	1.0	ug/L	1.0	2	U	Yes	
m,p-Xylene	2.0	ug/L	1.0	-	U	Yes	
πι,ρ-λγιεπε							

Sample location: BMSMC Building 5 Area

Sampling date: 12/23/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	128	ug/L	1.0	-	-	Yes
Benzene	32.2	ug/L	1.0	-	-	Yes
Benzyl Chloride	21.2	ug/L	1.0	-	-	Yes
Bromochloromethane	23.9	ug/L	1.0	-	-	Yes
Bromodichloromethane	25.8	ug/L	1.0	-	-	Yes
Bromoform	18.5	ug/L	1.0	-	-	Yes
2-Butanone (MEK)	143	ug/L	1.0	-	-	Yes
Carbon disulfide	24.7	ug/L	1.0	-	-	Yes
Carbon tetrachloride	24.8	ug/L	1.0	-	-	Yes
Chlorobenzene	27.7	ug/L	1.0	-	-	Yes
Chloroethane	48.4	ug/L	1.0	-	-	Yes
Chloroform	27.4	ug/L	1.0	-	-	Yes
Cyclohexane	30.0	ug/L	1.0	-	-	Yes
Dibromochloromethane	23.9	ug/L	1.0	-	-	Yes
1,2-Dibromo-3-chloropropane	24.9	ug/L	1.0	-	-	Yes
1,2-Dibromoethane	27.4	ug/L	1.0	-	-	Yes
Dichlorodifluoromethane	35.7	ug/L	1.0	-	-	Yes
1,2-Dichlorobenzene	34.3	ug/L	1.0	-	-	Yes
1,3-Dichlorobenzene	28.3	ug/L	1.0	-	-	Yes
1,4-Dichlorobenzene	28.5	ug/L	1.0	-	-	Yes
1,1-Dichloroethane	32.5	ug/L	1.0	-	-	Yes
1,2-Dichloroethane	29.8	ug/L	1.0	-	-	Yes
1,1-Dichloroethene	31.7	ug/L	1.0	-	-	Yes
cis-1,2-Dichloroethene	27.5	ug/L	1.0	-	-	Yes
trans-1,2-Dichloroethene	32.3	ug/L	1.0	-	-	Yes

1,2-Dichloropropane	29.7	ug/L	1.0	2	12	Yes	
cis-1,3-Dichloropropene	27.6	ug/L	1.0	-	-	Yes	
trans-1,3-Dichloropropene	39.7	ug/L	1.0	-	-	Yes	
Ethylbenzene	32.0	ug/L	1.0	1		Yes	
Freon 113	43.9	ug/L	1.0	-		Yes	
2-Hexanone	152	ug/L	1.0	7	-	Yes	
Isopropylbenzene	29.6	ug/L	1.0	-	4	Yes	
p-Isopropyltoluene	33.3	ug/L	1.0	-	-	Yes	
Methyl Acetate	140	ug/L	1.0	9	-	Yes	
Methyl Bromide	32.7	ug/L	1.0	-	14	Yes	
Methyl Chloride	42.9	ug/L	1.0		17	Yes	
Methylcyclohexane	30.4	ug/L	1.0	2	72	Yes	
Methylene chloride	30.3	ug/L	1.0	-	+	Yes	
4-Methyl-2-pentanone(MIBK)	148	ug/L	1.0			Yes	
Methyl Tert Butyl Ether	27.0	ug/L	1.0	42	-	Yes	
Styrene	30.3	ug/L	1.0	*	1-	Yes	
Tert-Amyl Alcohol	251	ug/L	1.0	-	-	Yes	
Tert-Butyl Alcohol	399	ug/L	1.0	¥	9	Yes	
1,1,2,2-Tetrachloroethane	29.7	ug/L	1.0		-	Yes	
Tetrachloroethene	22.5	ug/L	1.0	-	-	Yes	
Tetrahydrofuran	32.8	ug/L	1.0	9		Yes	
Toluene	32.4	ug/L	1.0	-	1.7	Yes	
1,2,3-Trichlorobenzene	26.5	ug/L	1.0	2	12	Yes	
1,2,4-Trichlorobenzene	26.4	ug/L	1.0	(4	14	Yes	
1,1,1-Trichloroethane	25.8	ug/L	1.0		-	Yes	
1,1,2-Trichloroethane	30.6	ug/L	1.0	2	(1)	Yes	
Trichloroethene	29.9	ug/L	1.0	-	-	Yes	
Trichlorofluoromethane	48.0	ug/L	1.0	-5		Yes	
1,2,4-Trimethylbenzene	32.8	ug/L	1.0	12	-	Yes	
Vinyl chloride	44.0	ug/L	1.0	*	-	Yes	
m,p-Xylene	59.2	ug/L	1.0		770	Yes	
o-Xylene	29.3	ug/L	1.0	-	123	Yes	

Sample ID: FA39942-11MSD

Sample location: BMSMC Building 5 Area

Sampling date: 12/23/2016 Matrix: Groundwater

Analyte Name	Result	Units I	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	123	ug/L	1.0	-	-	Yes
Benzene	28.8	ug/L	1.0	-	-	Yes
Benzyl Chloride	17.4	ug/L	1.0	-	-	Yes
Bromochloromethane	21.7	ug/L	1.0	-	-	Yes
Bromodichloromethane	21.7	ug/L	1.0	•	-	Yes
Bromoform	15.9	ug/L	1.0	_	-	Yes
2-Butanone (MEK)	132	ug/L	1.0	-	-	Yes
Carbon disulfide	20.4	ug/L	1.0	-	-	Yes
Carbon tetrachloride	21.6	ug/L	1.0	-	-	Yes
Chlorobenzene	24.0	ug/L	1.0	-	-	Yes
Chloroethane	40.0	ug/L	1.0	-	-	Yes
Chloroform	23.8	ug/L	1.0	-	-	Yes
Cyclohexane	26.3	ug/L	1.0	•	-	Yes
Dibromochloromethane	19.7	ug/L	1.0	-	-	Yes
1,2-Dibromo-3-chloropropane	24.8	ug/L	1.0	-	-	Yes
1,2-Dibromoethane	24.9	ug/L	1.0	-	-	Yes
Dichlorodifluoromethane	33.9	ug/L	1.0	-	-	Yes
1,2-Dichlorobenzene	29.0	ug/L	1.0	-	-	Yes
1,3-Dichlorobenzene	24.6	ug/L	1.0	-	-	Yes
1,4-Dichlorobenzene	24.5	ug/L	1.0	-	-	Yes
1,1-Dichloroethane	28.6	ug/L	1.0	-	-	Yes
1,2-Dichloroethane	25.8	ug/L	1.0	•	-	Yes
1,1-Dichloroethene	28.5	ug/L	1.0	-	-	Yes
cis-1,2-Dichloroethene	24.3	ug/L	1.0	-	-	Yes
trans-1,2-Dichloroethene	27.3	ug/L	1.0	-	-	Yes
1,2-Dichloropropane	26.7	ug/L	1.0	-	-	Yes

cis-1,3-Dichloropropene	22.7	ug/L	1.0	2	_	Yes
trans-1,3-Dichloropropene	24.2	ug/L	1.0	-	-	Yes
Ethylbenzene	28.0	ug/L	1.0	-	-	Yes
Freon 113	38.5	ug/L	1.0	2	-	Yes
2-Hexanone	137	ug/L	1.0	-	-	Yes
Isopropylbenzene	25.4	ug/L	1.0	-		Yes
p-Isopropyltoluene	28.3	ug/L	1.0	-	4	Yes
Methyl Acetate	123	ug/L	1.0	-	-	Yes
Methyl Bromide	29.0	ug/L	1.0	-	-	Yes
Methyl Chloride	37.8	ug/L	1.0	-	-	Yes
Methylcyclohexane	26.2	ug/L	1.0	-	-	Yes
Methylene chloride	26.3	ug/L	1.0	₽	2	Yes
4-Methyl-2-pentanone(MIBK)	131	ug/L	1.0	-	-	Yes
Methyl Tert Butyl Ether	23.9	ug/L	1.0			Yes
Styrene	25.6	ug/L	1.0	2	-	Yes
Tert-Amyl Alcohol	213	ug/L	1.0	*	-	Yes
Tert-Butyl Alcohol	346	ug/L	1.0	-		Yes
1,1,2,2-Tetrachloroethane	26.2	ug/L	1.0	2		Yes
Tetrachloroethene	19.8	ug/L	1.0	7	-	Yes
Tetrahydrofuran	29.2	ug/L	1.0	-	-	Yes
Toluene	27.6	ug/L	1.0	-	9	Yes
1,2,3-Trichlorobenzene	24.1	ug/L	1.0	-		Yes
1,2,4-Trichlorobenzene	23.9	ug/L	1.0	2	-	Yes
1,1,1-Trichloroethane	23.0	ug/L	1.0	*	-	Yes
1,1,2-Trichloroethane	26.6	ug/L	1.0	17		Yes 🗸
Trichloroethene	26.3	ug/L	1.0	2	2	Yes
Trichlorofluoromethane	42.6	ug/L	1.0	-	-	Yes
1,2,4-Trimethylbenzene	28.1	ug/L	1.0	5	.0	Yes
Vinyl chloride	41.1	ug/L	1.0	2	-	Yes
m,p-Xylene	49.9	ug/L	1.0	-		Yes
o-Xylene	24.7	ug/L	1.0		7.7	Yes

.

Project Number:_FA39942 Date:December_22-23,_2016
Date:December_22-23,_2016
Shipping date:December_27,_2016 EPA Region:2
-
GANIC PACKAGE ata Validation
wore greated to delineate required validation
were created to delineate required validation using professional judgment to make more
f the data users. The sample results were
ance documents in the following order of
ion SOP No. HW-33A Revision 0 SOM02.2. The QC criteria and data validation actions
imary guidance document, unless otherwise
data nackane received has
data package received has data summarized. The data review for VOCs
Sample matrix:Groundwater
10. EA20042 12
-10;_ FA39942-12
X Laboratory Control Spikes
X Field Duplicates X Calibrations
X Compound Identifications
X Compound Quantitation
X Quantitation Limits
46_8260C)
20 %

REVIEW OF VOLATILE ORG Low/Medium Volatile Da

The following guidelines for evaluating volatile organics actions. This document will assist the reviewer in u informed decision and in better serving the needs of assessed according to USEPA data validation guida precedence: USEPA Hazardous Waste Support Secti Low/Medium Volatile Data Validation. July, 2015. listed on the data review worksheets are from the pri noted. The hardcopied (laboratory name) __Accutest__ been reviewed and the quality control and performance included: Lab. Project/SDG No.: _____FA39942_____ No. of Samples: _____14____ Trip blank No.: __ FA39942-5;_ FA39942-6;_FA39942-Field blank No.: ______FA39496-2;_ FA39496-8 Equipment blank No.:_____FA39496-7____ Field duplicate No.:____-__X__ Data Completeness X Holding Times X___ GC/MS Tuning X Internal Standard Performance X Blanks X Surrogate Recoveries __X___ Matrix Spike/Matrix Spike Duplicate _OverallComments:__VOA_TCL_list_(SOM02.2)_(SW84 **Definition of Qualifiers:** J-Estimated results U-Compound not detected R-Rejected data UJ-Estimated nondetect Reviewer: Date: January 17, 2017

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4		
1		
	4	
·	7	
	<u> </u>	
	- 1	\
		· ·
V		
		-
	5-10-5	

All criteria were metX	
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
All samples ana	lyzed within method re	commended holding. Sa	amples p	roperly preserved.
				li.
				7

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 3° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, $T = 4^{\circ}C \pm 2^{\circ}C$), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (J-) and non-detected compounds as estimated (UJ).

Non-aqueous samples

a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days

from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.

- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

			A	ction
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds
				11.5
	No	≤ 7 days	No qu	alification
Aqueous	No	> 7 days	J	R
Aqueous	Yes	≤ 14 days	No qualification	
	Yes	> 14 days	J	R
Non Assessed	No	≤ 14 days	J	Professional judgment, UJ or R
Non-Aqueous	Yes	≤ 14 days	No qu	alification
	Yes/No	> 14 days	J	R
TCLP/SPLP	Yes	≤ 14 days	No qualification	
TCLP/SPLP	No	> 14 days	J	R

TCLP/SPLP	ZHE performed within the 14-day technical holding time	No qualification	
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J R	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qualification	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J	R
Sample temperature outside $4^{\circ}C \pm 2^{\circ}C$ upon receipt at the laboratory		Use profess	ional judgment
Holding times grossly exceeded		J R	

All criteria were metX_	
Criteria were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X___ The BFB performance results were reviewed and found to be within the specified criteria.

__X___ BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

Use professional judgment to determine whether associated data should be qualified based on the spectrum of the mass calibration compound.			ualified based on the
List	the	samples	affected:

If mass calibration is in error, all associated data are rejected.

All criteria were met	_X
Criteria were not met	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	12/30/16
Dates of continuing (initial) calibr	ation:_12/30/16
Dates of continuing calibration:_	01/03-04-05/17
Dates of ending calibration:	01/03-04-05/17
Instrument ID numbers:	GCMSJ
Matrix/Level: Aqueous/lo)W

DATE	LAB FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#	RFs, %RSD, <u>%D</u> , r		AFFECTED
12/30/16	ICV-5529-5	-20.7 %	1,2,3-trichlorobezene*	FA39942-1 to 12;
		-36.7 %	tert-butyl alcohol	-11MS/-11MSD
01/04/17	CC5529-5	-20.5 %	MIBK*	FA39942-1 to -8;
		22.9 %	Bromomethane*	-10 to -12;
		-22.1 %	1,1,2-trichloroethane	-11MS/MSD
01/04/17	ecc5529-5	-24.3 %	Vinyl chloride*	FA39942-1 to -8;
				-10 to -12;
				-11MS/MSD
01/05/17	cc5529-5	-25.7	Chloroethane	FA39942-9
		-22.5	Acetone*	
		-20.6	Methyl actetate*	
		-22.9	Tetrahydrofuran	<i>h</i>
		-24.3	2-butanone*	
		-27.4	MIBK*	į.
		-30.2	2-hexanone*	
01/05/16	ecc5529-5	-42.7	Vinyl chloride*	FA39942-9
		-50.0	Chloroethane*	
		-20.0	1,1-dichloroethene*	

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the method and validation guidance document required performance criteria except in the cases described in this document. Closing calibration check verification included in data package.

Analytes not meeting the %D performance criteria are qualified as estimated (J or UJ) on affected samples.

* Outside the validation method performance criteria but within the guidance document performance criteria.

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve.

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0
Chloromethane	0.010	20.0	±30.0	±50.0
Vinyl chloride	0.010	20.0	±25.0	±50.0
Bromomethane	0.010	40.0	±30.0	±50.0
Chloroethane	0.010	40.0	±25.0	±50.0
Trichlorofluoromethane	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene	0.060	20.0	±20.0	±25.0
1.1,2-Trichloro-1,2,2-trifluoroethane	0.050	25.0	±25.0	±50.0
Acetone	0.030	40.0	±40.0	±50.0
Carbon disulfide	0.100	20.0	±25.0	±25.0
	-	40.0		±50.0
Methyl acetate	0.010	40.0	±40.0 ±30.0	±50.0
Methylene chloride	_			±30.0 ±25.0
trans-1,2-Dichloroethene	0.100	20.0	±20.0 ±25.0	±23.0 ±50.0
Methyl tert-butyl ether	0.100	40.0		
1,1-Dichloroethane	0.300	20.0	±20.0	±25.0
cis-1,2-Dichloroethene	0.200	20.0	±20.0	±25.0
2-Butanone	0.010	40.0	±40.0	±50.0
Bromochloromethane	0.100	20.0	±20.0	±25.0
Chloroform	0.300	20.0	±20.0	±25.0
1,1.1-Trichloroethane	0.050	20.0	±25.0	±25.0
Cyclohexane	0.010	40.0	±25.0	±50.0
Carbon tetrachloride	0.100	20.0	±25.0	±25.0
Benzene	0.200	20.0	±20.0	±25.0
1.2-Dichloroethane	0.070	20.0	±20.0	±25.0
Trichloroethene	0.200	20.0	±20.0	±25.0
Methylcyclohexane	0.050	40.0	±25.0	±50.0
1.2-Dichloropropane	0.200	20.0	±20.0	±25.0
Bromodichloromethane	0.300	20.0	±20.0	±25.0
cis-1,3-Dichloropropene	0.300	20.0	±20.0	±25.0
4-Methyl-2-pentanone	0.030	25.0	±30.0	±50.0
Toluene	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene	0.200	20.0	±20.0	±25.0
1,1.2-Trichloroethane	0.200	20.0	±20.0	±25.0
Tetrachloroethene	0.100	20.0	±20.0	±25.0
2-Hexanone	0.010	40.0	±40.0	±50.0
Dibromochloromethane	0.200	20.0	±20.0	±25.0
1,2-Dibromoethane	0.200	20.0	±20.0	±25.0
Chlorobenzene	0.400	20.0	±20.0	±25.0
Ethylbenzene	0.400	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
m.p-Xylene	0.200	20.0	±20.0	±25.0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25.0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1.1.2,2-Tetrachloroethane	0.200	20.0	±25.0	±25.0
1,3-Dichlorobenzene	0.500	20.0	±20.0	±25.0
1,4-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1.2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1.2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50.0
1,2,4-Trichlorobenzene	0.400	20.0	±30.0	±50.0
1,2,3-Trichlorobenzene	0.400	25.0	±30.0	±50.0
Deuterated Monitoring Compoun-	d			
Vinyl chloride-d3	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1.1-Dichloroethene-d2	0.050	20.0	±25.0	±25.0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0.300	20.0	±20.0	±25.0
1,2-Dichloroethane-d4	0.060	20.0	±25.0	±25.0
Benzene-da	0.300	20.0	±20.0	±25.0
1.2-Dichloropropane-do	0.200	20.0	±20.0	±25.0
Toluene-ds	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene-d4	0.200	20.0	±20.0	±25.0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1.1,2,2-Tetrachloroethane-d2	0.200	20.0	±25.0	±25.0
1.2-Dichlorobenzene-d4	0.400	20.0	±20.0	±25.0

¹ If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - i. Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional judgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - i. Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - i. Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table for target analyte	Use professional judgment J+ or R	R	
RRF > Minimum RRF in Table for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table for target analyte	No qualification	No qualification	

All criteria were met	
Criteria were not met	
and/or see belowX	

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table) . If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria for Opening	Criteria for	Action	
CCV	Closing CCV	Detect	Non-detect
CCV not performed at required frequency	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table for target analyte	J	נט
% D within the inclusive Opening Maximum % D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table for target analyte	No qualification	No qualification

All criteria were met _	
Criteria were not met	
and/or see below	_X

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/L}$ µg/kg for soil matrices.

Laboratory blanks

Note:

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
				_described_in_this
_01/05/17				
Note:			below the reporting limit	
Field/Equipme	nt/Trip blank			
If field or trip blathe method blar	•	the data revi	ewer should evaluate th	is data in a similar fashion as
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
- LTD		5 TO 10 TO 1	/equipment_blanks_ass	ociated_with_this_data
		82(8		

All criteria were met _	.X
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CROT *	< CRQL*	Report CRQL value with a U
	< CRQL *	≥ CRQL*	No qualification required
Method,		< CRQL*	Report CRQL value with a U
Storage, Field,	> CRQL *	≥ CRQL* and ≤	Report blank value for sample
Trip,		blank concentration	concentration with a U
TCLP/SPLP		≥ CRQL* and >	No qualification required
LEB,		blank concentration	140 quantication required
Instrument**	= CRQL*	≤ CRQL*	Report CRQL value with a U
		> CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	contamination	Detects	concentration with a U

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				-3	
			_mil		
		-			
		2			
9					
- 0					
The state of the s			-	1	

All criteria were met _____ Criteria were not met and/or see below ____ X___

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1,1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1,2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1,2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1,3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1,1,2,2-	65-120	45-120
Tetrachloroethane-d2		
1,2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID	Date DMCs		% Recovery	Action	
		2.0			

Note: DMCs recoveries within the laboratory required control limits and within the guidance document performance criteria (80 - 120). Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

Action:

- 1. For any recovery greater than the upper acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated high (J+).
 - b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
 - Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses
– Summary

	Action					
Criteria	Detect Associated Compounds	Non-detected Associated Compounds				
%åR < 10%	J-	R				
10% ≤ % R < Lower Acceptance Limit	J-	បរ				
Lower Acceptance Limit $\leq \%R \leq Upper$ Acceptance Limit	No qualification	No qualification				
%R > Upper Acceptance Limit	J+	No qualification				

TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

Vinyl chloride-d3 (DMC-1)	Chloroethane-ds (DMC-2)	1,1-Dichloroethene-d2 (DMC-3)
Vinyl chloride	Dichlorodifluoromethane Chloromethane Bromomethane Chloroethane Carbon disulfide	trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1-Dichloroethene
2-Butanone-ds (DMC-4)	Chloroform-d (DMC-5)	1,2-Dichloroethane-d4 (DMC-6)
Acetone 2-Butanone	1,1-Dichloroethane Bromochloromethane Chloroform Dibromochloromethane Bromoform	Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-trifluoroethane Methyl acetate Methylene chloride Methyl-tert-butyl ether 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dibromoethane 1,2-Dichloroethane
Benzene-ds (DMC-7)	1,2-Dichloropropane-da (DMC-8)	Toluene-ds (DMC-9)
Benzene	Cyclohexane Methylcyclohexane 1.2-Dichloropropane Bromodichloromethane	Trichloroethene Toluene Tetrachloroethene Ethylbenzene o-Xylene m.p-Xylene Styrene Isopropylbenzene
trans-1,3-Dichloropropene-d4 (DMC-10)	2-Hexanone-ds (DMC-11)	1,1,2,2-Tetrachloroethane-d2 (DMC-12)
cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	4-Methyl-2-pentanone 2-Hexanone	1,1,2,2,-Tetrachloroethane 1,2-Dibromo-3-chloropropane
1,2-Dichlorobenzene-d4 (DMC-13) Chlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene		

All criteria were met _	
Criteria were not met	
and/or see below	_X

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:_ FA39942-11MS/-11MSD	Matrix/Level:	Groundwater
Sample ID:_ FA39942-9MS/-9MSD	Matrix/Level:	Groundwater

The QC reported here applies to the following samples: Method: **SW846 8260C** FA39942-1, FA39942-2, FA39942-3, FA39942-4, FA39942-5, FA39942-6, FA39942-7, FA39942-8, FA39942-10. FA39942-11. FA39942-12

Compound	FA39942- ug/l (11 Spike Q ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
✓ Benzyl Chloride ✓ Bromoform ✓ Chloroethane 1,2-Dichlorobenzene trans-1,2-	ND ND ND 6.6	25 25 25 25	21.2 18.5 48.4 34.3	85 74 194* 111	25 25 25 25	17.4 15.9 40.0 29.0	70 64* 160* 90	20* 15 19 17*	54-122/18 66-123/21 62-144/20 82-124/14
✓ Dichloroethylene ✓ Ethylbenzene ✓ p-lsopropyltoluene ✓ Styrene ✓ Tert-Butyl Alcohol ✓ Tetrahydrofuran	ND ND ND ND ND ND	25 25 25 25 25 250 25	32.3 32.0 33.3 30.3 399 32.8	129* 128* 133* 121* 160* 131*	25 25 25 25 25 250 25	27.3 28.0 28.3 25.6 346 29.2	109 112 113 102 138* 117	17 13 16 17 14	76-127/17 81-121/14 79-130/16 78-119/23 63-129/27 56-122/21

FA39942-11 Spike MS MS Spike MSD MSD Compound ug/l Q ug/l ug/l % ug/l ug/l % RI	PD Rec/RPD
✓ Toluene ND 25 32.4 130* 25 27.6 110 16 ✓ 1,1,2-Trichloroethane ND 25 30.6 122* 25 26.6 106 14 ✓ Trichlorofluoromethane ND 25 48.0 192* 25 42.6 170* 12 ✓ 1,2,4-Trimethylbenzene ND 25 32.8 131* 25 28.1 112 15 ✓ Vinyl Chloride ND 25 44.0 176* 25 41.1 164* 7 m,p-Xylene ND 50 59.2 118 50 49.9 100 17 o-Xylene ND 25 29.3 117 25 24.7 99 17	76-119/14 71-156/21 79-120/18 69-159/18 7* 79-126/15

^{* =} Outside of Control Limits.

Note: MS/MSD % recoveries and RPD within laboratory control limits except in the cases described in this document.

Analytes not meeting the MS/MSD % recovery criteria qualified as estimated (J or UJ) in affected samples.

No action taken on analytes not meeting the RPD control limits; professional judgment.

No action taken on analytes not meeting one of MS/MSD % recovery criteria. Professional judgment.

Method: SW846 8260C

The QC reported here applies to the following samples: FA39942-9

Compound	FA39942 ug/l	2-9 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
Benzene Chloroethane 1,1-Dichloroethane trans-1,2- Dichloroethylene 1,2-Dichloropropane p-Isopropyltoluene Styrene	ND ND ND ND ND ND ND		1250 1250 1250 1250 1250 1250 1250	1670 1910 1630 1600 1610 1640 1560	134* 153* 130* 128* 129* 131* 125*	1250 1250 1250 1250 1250 1250 1250	1650 1890 1640 1620 1560 1690 1550	132* 151* 131* 130* 125* 135* 124*	1 1 1 3 3	81-122/14 62-144/20 81-122/15 76-127/17 76-124/14 79-130/16 78-119/23
Tetrahydrofuran Toluene 1,1,2-Trichloroethane 1,2,4-Trimethylbenzene	ND 49.7 ND 32.1	J	1250 1250 1250 1250	1550 1720 1590 1670	124* 134* 127* 131*	1250 1250 1250 1250	1470 1710 1530 1660	118 133* 122* 130*	5 1 4 1	56-122/21 80-120/14 76-119/14 79-120/18

^{* =} Outside of Control Limits.

Note: MS/MSD % recoveries and RPD within laboratory control limits except in the cases described in this document.

Analytes not meeting the MS/MSD % recovery criteria qualified as estimated (J or UJ) in affected samples.

No action taken on analytes not meeting the RPD control limits; professional judgment.

No action taken on analytes not meeting one of MS/MSD % recovery criteria. Professional judgment.

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	_X	
Criteria were not met		
and/or see below		

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT			
Recoveries(blank_spike)_within_laboratory_control_limits							

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE	DUPLICATE	RPD	ACTION		
		CONC.	CONC.				
No field/laboratory duplicate analyzed with this data package. MS/MSD % recovery RPD used to assess precision. RPD within required criteria, ≤ 50 % for target analytes detected at concentration > 5x the SQL.							

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metX	_
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION	
Internal sta	andard area withi	n the method per	formance criteria.			

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or midpoint standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Act	ion
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J-	No qualification
Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J÷	R
Area counts \geq 50% but \leq 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qual	ification
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R **	R
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qual	ification

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf ** Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
	ve Retention Times (RRTs) of reported cor T [opening Continuing Calibration Verificatio ion].	
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
spectrum froi calibration)] n a. b.	n of the sample compound and a current labor the associated calibration standard (openinust match according to the following criteria: All ions present in the standard mass specific 10% must be present in the sample spectro. The relative intensities of these ions must and sample spectra (e.g., for an ion with spectrum, the corresponding sample ion at lons present at greater than 10% in the standard spectrum, must be evaluate spectral interpretation.	ng CCV or mid-point standard from initial ectrum at a relative intensity greater than um. agree within ±20% between the standard of an abundance of 50% in the standard bundance must be between 30-70%). ample mass spectrum, but not present in
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
	_	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

: - 4	TI	A-
ISI.	- 1 1	11.5

Sample ID	Compound	Sample ID	Compound
		=======================================	
			(3) III

Action:

- Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene

- isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _	_X
Criteria were not met	
and/or see below	10

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Compounds	Non-detected Associated Compounds	
% Moisture < 70.0	No qualification		
70.0 < % Moisture < 90.0	J	UJ	
% Moisture > 90.0	J R		

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

FA39942-1

MTBE

RF = 1.407

[] = (50418)(50)/(1.407)(608432) = 2.94 ppb Ok

Percent Solids

List samples which have

B.

	All criteria were metX Criteria were not met and/or see below
≥ 70 % solids	

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR I	DILUTION	
JC39942-2	50 x	Ethylbenzene range.	outside	calibration
				7000
			-	
		-		
			- 1/2	
	1000			*****

All criteria were met _	_X	_
Criteria were not met		
and/or see below		

OTHER ISSUES

A.	System Performa	псе	
List sa	mples qualified bas	ed on the degradation of system pe	erformance during simple analysis:
Sampl	e ID	Comments	Actions
_No_d	legradation_of_syst	em_performance_observed.	
Action	 -		
degrad	ded during sample		termined that system performance has poratory Program COR any action as a tly affected the data.
В.	Overall Assessmen	nt of Data	
List sa	mples qualified bas	ed on other issues:	
Sampl	e ID	Comments	Actions
			of_the_dataResults_are_valid_and

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).